
Why Open Software Matters
for Government

& Civic Tech
[and how to support it]

by

Rufus Pollock 1

Does free/open source software matter for government and civic tech? Matter in the sense that
it should have a deep and strategic role in government IT and policy rather than just being a
"nice to have" or something "we use when we can"?

The answer is yes, open source software matters for government and civic tech – and,
conversely, government matters for open source. This paper shows how and why, covering:

● Why open software is especially important for government and civic tech
● Why open software needs special support and treatment by government
● What specific actions can be taken to provide this support for open software

We also discuss how software is different from other things that government traditionally buy
or fund. This difference is why government cannot buy software like it buys office furniture or
procures the building of bridges – and why buying open matters so much.

1 President and Founder of Open Knowledge and Associate at the Centre of Intellectual Property and
Information Law, University of Cambridge. I’m grateful to many people with whom I’ve had the opportunity to
discuss these topics over the years. I also wish to acknowledge funding from Open Society Foundations that
supported the drafting of the first version of this paper. First draft March 2015, this version July 2016.

Table of Contents

Executive Summary
Why Open Software

The Logic of Support
Promoting Open Source for Civic Tech

Key Concepts
Civic tech
Free / Open Source Software
Software Services and Open Services

Why Open Source
Introduction
Four Observations and the Logic of Open Source

Economics of Software
Switching Costs and Lock-in
The Future is Important and Difficult to Know
Government Incentives and Bargaining

How To Promote Open Source in Civic Tech
Recognize and Reward Open Source in Procurement
Agile Procurement
Open Source Solutions - a marketing and business development agency for government
open source
Open Offsets
Choose Open

Appendix
Why Open Standards or Open APIs mean little (relative to open source)

Executive Summary
This executive summary consists of two parts. First, a summary of why open software is
important in government and why it should be explicitly supported and promoted. Second,
suggestions and recommendations for the steps that government and funders can take to
promote open software in government and civic tech.

Why Open Software
We begin with four facts about software and government which are a basis for the conclusions
and recommendations that follow.

1. The economics of software: software has high fixed costs and low (zero) marginal costs
and it is also incremental in that new code builds on old​. The cost structure creates a
fundamental dilemma between finding ways to fund the fixed cost, e.g. by having
proprietary software and raising prices; and promoting optimal access by setting the
price at the marginal cost level of zero. In resolving this dilemma, proprietary software
models favour the funding of fixed costs but at the price of inefficiently raised pricing
and hampering future development, whilst open source models favour efficient pricing
and access but face the challenge of funding the fixed costs to create high quality
software in the first place. The incremental nature of software sharpens this dilemma
and contributes to technological and vendor lock-in.

2. Switching costs are significant: it is (increasingly) costly to switch off a given piece of
software once you start using it​. This is because you make "asset (software) specific
investments": in learning how to use the software, integrating the software with your
systems, extending and customizing the software, etc. These all mean there are often
substantial costs associated with switching to an alternative later.

3. The future matters and is difficult to know​: software is used for a long time – whether in
its original or upgraded form. Knowing the future is therefore especially important in
purchasing software. Predictions about the future in relation to software are especially
hard because of its complex nature and adaptability; behavioural biases mean the level
of uncertainty and likely future change are underestimated. Together these mean lock-in
is under-estimated.

4. Governments are bad at negotiating, especially in this environment, and hence the
lock-in problem is especially acute for Government​. Government are generally poor
decision-makers and bargainers due to the incentives faced by government as a whole
and by individuals within government. They are especially weak when having to make
trade-offs between the near-term and the more distant future. They are even weaker
when the future is complex, uncertain and hard to specify contractually up front.
Software procurement has all of these characteristics, making it particularly prone to
error compared to other government procurement areas.

The Logic of Support

Note: numbers in brackets e.g. (1) refer to one of the four observations of the previous section.

A. Lock-in to Proprietary Software is a Problem

Incremental Nature of Software (1) + Switching Costs (2)
imply ...

Lock-in happens for a software technology, and, if it is proprietary, to a vendor

 Zero Marginal Cost of Software (1) + Uncertainty about the Future both user needs and
technology changes (3) + Governments are Poor Bargainers (4)

imply ...
Lock-in to proprietary software is a problem

Lock-in has high costs and is under-estimated - and especially so for government

B. Open Source is a Solution

Lock-in is a problem
imply ...

 Strategies that reduce lock-in are valuable

Economics of Software (1)
imply ...

Open-source is a strategy for government (and others) to reduce future lock-in
Why? Because it requires the software provider to make an up-front commitment to making the

essential technology available both to users and other technologists at zero cost, both now ​and​ in the
future

Together these two points

imply …
Open source is a solution

And a specific commitment to open source in civic tech is important and valuable

C. Open Source Needs Support
And Government / Civic Tech is an area where it can be provided effectively

Software has high fixed costs and a challenge for open source is to secure sufficient support

investment to cover these fixed costs (1 - Economics)
+

Governments are large spenders on IT and are bureaucratic: they can make rules to pre-commit

up front (e.g. in procurement) and can feasibly coordinate whether at local, national or, even,
international levels on buying and investment decisions related to software.

imply ...

Government is especially well situated to support open source

AND
Government ​has​ the tools to provide systematic support

AND
Government ​should​ provide systematic support

Promoting Open Software for Civic Tech
We have established in the previous section that there is a strong basis for promoting open
source for civic tech. This section focuses on some specific strategic and tactical suggestions for
achieving this goal of promoting open source. There are four proposals that we summarize here.
Each of these is covered in detail in the main section below. We especially emphasize the
potential of the third option as it does not require up-front participation by government and can
be boot-strapped with philanthropic funding.

1. Recognize and reward open source in IT procurement.

Give open source explicit recognition and beneficial treatment in procurement. Specifically,
introduce into government tenders: EITHER an explicit requirement for an open source solution
OR a significant points value for open source in the scoring for solutions (more than 30% of the
points on offer).

2. Make government IT procurement more agile and lightweight.

Current methodologies follow a "spec and deliver" model in which government attempts to
define a full spec up front and then seeks solutions that deliver against this. The spec and
deliver model greatly diminishes the value of open source - which allows for rapid iteration in
the open, and more rapid switching of provider - and implicitly builds lock-in to the selected
provider whose solution is a black-box to the buyer. In addition, whilst theoretically shifting risk
to the supplier of the software, given the difficulty of specifying software up front it really just
inflates upfront costs (since the supplier has to price in risk) and sets the scene for complex and
cumbersome later negotiations about under-specified elements.

3. Develop a marketing and business development support organization for open source in
key markets (e.g. US and Europe).

The organization would be small, at least initially, and focused on three closely related activity

areas (in rough order of importance):

1. General marketing of open source to government at both local and national level: getting
in front of CIOs, explaining open source, demystifying and derisking it, making the case
etc. This is not specific to any specific product or solution.

2. Supporting open source businesses, especially those at an early-stage, in initial business
development activities including: connecting startups to potential customers ("opening
the rolodex") and guidance in navigating the bureaucracy of government procurement
including discovering and responding to RFPs.

3. Promoting commercialization of open source by providing advice, training and support
for open source startups and developers in commercializing and marketing their
technology. Open source developers and startups are often strong on technology and
weak on marketing and selling their solutions and this support would help address these
deficiencies.

4. Open Offsets: establish target levels of open source financing combined with a “offsets”
style scheme to discharge these obligations.

An “Open Offsets” program would combine three components:

1. Establish target commitments for funding open source for participants in the program
who could include government, philanthropists and private sector. Targets would be a
specific measurable figure like 20% of all IT spending or $5m.

2. Participants discharge their funding commitment either through direct spending such as
procurement or sponsorship ​or ​via purchase of open source “offsets”. “Offsets” enable
organizations to discharge their open source funding obligation in an analogous manner
to the way carbon offsets allow groups to deliver on their climate change commitments.

3. Administrators of the open offset fund distribute the funds to relevant open source
projects and communities in a transparent manner, likely using some combination of
expert advice, community voting and value generated (this latter based on an estimate of
the usage and value of created by given pieces of open software).

5. “Choose Open”: a grass-roots oriented campaign to promote open software in government
and government run activities such as education.

“Choose Open” would be modelled on recent initiatives in online political organizing such as
“Move On” in the 2004 US Presidential election as well as online initiatives like Avaaz. It would
combine central provision of message, materials and policy with localized community
participation to use these to drive change.

Key Concepts

Civic tech
Civic tech is digital technology (websites, apps and platforms) related to “civic” life. As defined, it
includes most notably all government IT (whether in-house or procured) but it also includes
technology created by others directly for citizens - from apps that let you register to vote to
those that let you email your elected representative.

These two streams of "civic tech" are increasingly close from the perspective of end users – for
citizens the distinction between a "where to vote" app produced by a third party such as Google
or a non-profit and an app produced officially may be in minimal. However, from a policy,
funding and management perspective the difference between "government IT" – whether built,
bought in or outsourced – and all other civic technology is large. 2

Thus, for our purposes, we distinguish the two areas. Moreover, our focus will largely be on the
government area, given its vastly larger size and its systemic policy and process role.

Free / Open Source Software
Throughout I will use open source software or open software as shorthand for free/open source
software (or "libre" software).

Open source software is defined precisely by the Open Source Definition at
http://opensource.org/​. In summary, it is software that everyone has freedom to use, modify and
share without need to seek permission or make payment – whoever they are and whatever their
purpose.

Informal open sharing has been a constant feature of the software community from its earliest
days in the 1950s. However, it was only in the 1980s that free and open source software
developed as a formal formal idea and the first free and open source licenses were created (the
GNU Public License).

Open source has now spread rapidly beyond its roots in academia, and today it dominates major
areas such as Internet tools and it has seen widespread adoption in business. Most people in
their daily browsing of the web use an open source web browser such as Firefox or Chrome and
the majority of smartphones run on the open source Android operating system.

2 Government is still running or buying the vast majority of the "civic tech" even in the biggest pipe-dreams of

the "government as a platform" evangelists.

http://opensource.org/

All that said, open source still struggles in many areas, and uptake in government remains
relatively low. At a policy level, there is also limited support for open source: few, if any,
governments have an explicit open source preference in procurement. In addition, government
and philanthropic funding of software often fails to require open sourcing the outputs.

Software Services and Open Services
Increasingly we do not purchase a given software application but we interact with an online
"service" in the “cloud”. Ignoring online services and focusing only on open "software" in a
narrow sense would exclude a large and growing area of information technology and especially
civic tech. Thus, whenever you see open source or open source software mentioned, consider it
to include online applications and services.

We should therefore be clear what we mean by "open" (open source) service. An open service,
as per the Open Service Definition – ​http://opendefinition.org/ossd/​ – is a service whose entire
application code is open source and where any user's data can be extracted, and migrated,
quickly, easily and at no charge to another instance of the same application (though not
necessarily other, different applications).

http://opendefinition.org/ossd/

Why Open Source

Introduction
Open source software is free today, free in future, and provides freedom of choice today and in
the future regarding both vendor and mode of implementation (e.g. on premise vs cloud,
self-managed vs vendor managed etc).

By contrast, proprietary software is often expensive, has clear future purchase costs and
commits one to a given vendor both now and into the future.

Given this it would seem obvious that open source is always preferable. However, there are
problems with such a simple comparison.

First, open source software is "free" only in a limited sense. It is free in that, unlike proprietary
software, there is no license fee. However, this is only part of the story. The cost of software is
not just the licensing fee: there is the cost of setup and installation, the cost of maintenance
(bug-fixing, upgrades), costs of training, etc. The full price for software is some combination of all
these costs and the term "total cost of ownership" is often used. In this sense, the price of open
source is not zero, since it will still have these ancillary costs even if there is no license fee.

Second, we need to account for quality (features, reliability etc). Two different pieces of
software may differ substantially in quality even when performing very similar functions. In that
sense, we need to consider quality and price together – one piece of software may be more
expensive than another, but it may also be much better.

In theory, we could try to estimate the cost and quality for open source solutions and compare
them with proprietary ones. Long debates have been had over the "total cost of ownership" for
open source vs alternatives. The issue is that, unlike the license fee which is well-defined, the
other costs that make up the total-cost of ownership are often hard to estimate and subject to a
significant degree of judgment (and debate).

However, there are substantial uncertainties associated with this kind of empirical analysis, and
it necessarily focuses on only a few particular pieces of software or technology. Thus, rather
than pursue this route, we will instead focus on principled approach based on a few key facts
that together yield some clear conclusions.

Four Facts and the Logic of Open Source
We proceed from four facts about the way in which software and government work that are
important for government IT policy. These are as follows:

1. The economics of software: software has high fixed costs and low (zero) marginal costs

and it is also incremental in that new code builds on old​. The cost structure creates a
fundamental dilemma between finding ways to fund the fixed cost, e.g. by having
proprietary software and raising prices; and promoting optimal access by setting the
price at the marginal cost level of zero. In resolving this dilemma, proprietary software
models favour the funding of fixed costs but at the price of inefficiently raised pricing
and hampering future development, whilst open source models favour efficient pricing
and access but face the challenge of funding the fixed costs to create high quality
software in the first place. The incremental nature of software sharpens this dilemma
and contributes to technological and vendor lock-in.

2. Switching costs are significant: it is (increasingly) costly to switch off a given piece of
software once you start using it​. This is because you make "asset (software) specific
investments": in learning how to use the software, integrating the software with your
systems, extending and customizing the software, etc. These all mean there are often
substantial costs associated with switching to an alternative later.

3. The future matters and is difficult to know​: software is used for a long time – whether in
its original or upgraded form. Knowing the future is therefore especially important in
purchasing software. Predictions about the future in relation to software are especially
hard because of its complex nature and adaptability; behavioural biases mean the level
of uncertainty and likely future change are underestimated. Together these mean lock-in
is under-estimated.

4. Governments are bad at negotiating, especially in this environment, and hence the
lock-in problem is especially acute for Government​. Government are generally poor
decision-makers and bargainers due to the incentives faced by government as a whole
and by individuals within government. They are especially weak when having to make
trade-offs between the near-term and the more distant future. They are even weaker
when the future is complex, uncertain and hard to specify contractually up front.
Software procurement has all of these characteristics, making it particularly prone to
error compared to other government procurement areas.

Each of these will be elaborated on in detail below. First, however we look at the conclusions
that follow:

Note: numbers in brackets e.g. (1) refer to one of the four observations of the previous section.

A. Lock-in to Proprietary Software is a Problem

Incremental Nature of Software (1) + Switching Costs (2)
imply ...

Lock-in happens for a software technology, and, if it is proprietary, to a vendor

 Zero Marginal Cost of Software (1) + Uncertainty about the Future both user needs and
technology changes (3) + Governments are Poor Bargainers (4)

imply ...
Lock-in to proprietary software is a problem

Lock-in has high costs and is under-estimated - and especially so for government

B. Open Source is a Solution

Lock-in is a problem
imply ...

 strategies that reduce lock-in are valuable

Economics of Software (1)
imply ...

Open-source is a strategy for government (and others) to reduce future lock-in
Why? Because it requires the software provider to make an up-front commitment to making the

essential technology available both to users and other technologists at zero cost, both now ​and​ in the
future

Together these two points

imply …
Open source is a solution

And a specific commitment to open source in civic tech is important and valuable

C. Open Source Needs Support
And Government / Civic Tech is an area where it can be provided effectively

Software has high fixed costs and a challenge for open source is to secure sufficient support

investment to cover these fixed costs (1 - Economics)
+

Governments are large spenders on IT and are bureaucratic: they can make rules to pre-commit
up front (e.g. in procurement) and can feasibly coordinate whether at local, national or, even,

international levels on buying and investment decisions related to software.

imply ...

Government is especially well situated to support open source
AND

Government has the tools to provide systematic support

Economics of Software

There are three key aspects of the economics of software that we highlight:

1. High fixed, low (zero) marginal costs. Software is digital and therefore approximately
costless to reproduce (once you have a first copy). At the same time the cost of 3

producing the first copy can be very high.
2. Software systems are often platforms on which other systems build or to which they

interconnect. This - plus the first point - creates (indirect) network effects for software: a
user of a certain software is benefitted by the use of that software by others (in the same
way that with direct network effects a user of a classic network like a telephone system
gets benefit from other users on their network).

3. Software is incremental: you can build on what you already did, improving and extending
it.

From these observations derive the following implications.

1. Open vs Closed Dilemma
First, the low marginal / high fixed cost nature of software presents us with a dilemma: if we
supply (efficiently) at marginal cost how will we fund the fixed cost?

The open source option resolves this one way: supply software at marginal cost (zero). However,
the challenge then is to find sufficient funds to cover the fixed costs and we risk
“under-investment” – software not being created or of being of lower quality then we wish.

3 Software is just digital bits that tell a computer "what to do". Digital bits are costless to copy. At the same
time, software has large up-front fixed costs to create the first copy. So, software has large fixed costs together
with very low "marginal" costs (that is the cost of producing an additional copy or serving an additional user).
Put more simply: if I develop a new application, the costs of that development are the same whether I serve 1
user or 1 million. Implications include:

● initial software development is risky especially if you want a reasonably polished product - you have to
invest quite a lot before you get something useful and you bear those costs before you have many
users.

● If you are successful you then make a lot of money as the costs of additional users is very low so what
each new user pays is pretty much pure profit. Software development is thus similar to the film or
music industry which also have large up front costs (making the record, making the film) and low
marginal costs for each user. Like those industries software is therefore "hit-oriented" - most things
never make it in a big way, and a few go massive. It is also why there is so much VC (venture capital) in
software compared to, say, ice-cream parlours. Software needs investors to bear the up-front
investment risk in return for a share of a, possible, massive win.

● Once you have software it is *feasible* - and, in fact, economically "optimal" - to provide it to every
potential user (since costs of provision are zero). This makes software quite different compared to
"normal" goods like cars or food or even laptops. Economists call things like software "nonrival" - as
my use of it (making a copy) does not affect your use of it - our use is not "rival". Traditional, physical
goods are "rival".

Finally, what about software "services"? Services are a bit different. With services we do not have just the
software: we also have the hardware and support staff to run the service. There are still "economies of scale":
one support staff member plus a server can provide for, say, 10,000 users and so the service costs do not vary
between 1 and 10,000 users. Nevertheless, software services are more hybridized and, on the non-software
side, have more traditional economic characteristics.

The proprietary option resolves this the other way: use copyright (and patents) to create
"excludability" limiting access and making production less efficient but generating more money
for investment. Funding production is easier and so more software, of a higher quality, may be
created. However, this comes at the cost of higher prices which mean that some users never get
to use the software (even though they could be supplied). In addition, exclusion prevents reuse
by future innovators and creators retarding innovation.

2. Path Dependence and Lock-In
The second implication is around path dependence and lock-in. Points 2 (platforms) and 3
(incrementality) imply there is path dependence and increasing (technological) lock-in to 4

previously selected software: as time goes by increasingly hard to enter a given software market
as existing software has a huge lead. 5

3. The “Market” Does Not Help (that much)
Third, these economic characteristics provide an immediate response to market
fundamentalists who argue that we can just let the "market" sort it out -- that is: market forces
will produce an optimal outcome. The economics of software mean that a simple
"market-based" outcome will never be optimal. In a perfect world, you would find a way to fund 6

the fixed costs of the software (that you wanted) and then supply it to everyone openly for free
(this would essentially be open source with efficient up front funding).

The Challenge for Open Source
Given these economics, open source has a challenge. Being free to use and free to copy, open
source suppliers are able to capture less of the value generated by their product (users get more
of it!). In addition, open source is more competitive – if you create an open source product
anyone else can come in and supply it too. This means the present value of all income, present
and future, for open source is much lower because income is both lower and more risky. This 7

means open source has a much harder time obtaining funding compared to proprietary options -
whether that funding is out of its own cash flows or from investors willing to make up-front

4 Technological lock-in is different from switching-costs lock-in but the two reinforce. Strictly, switching costs
lock-in is between a particular user and the specific software they have chosen. Technological lock-in is about
the fact that when a particular software or technology is chosen by people today it increases its likelihood of
being chosen (by anyone) tomorrow.
5 The switching costs section (see the next section) and this point about lock-in here are distinct but they
reinforce each other: path dependence reduces choice in the future and mean that the power/impact of
proprietary control of a successful software platform are very large.
6 For the economists out there, classic market arguments rely on "convexity" of production functions; the
production function is very non-convex as you have large fixed costs and then zero marginal costs. In addition,
as we have detailed these markets clearly are incomplete and participants have incomplete information plus
various behavioural biases.
7 A riskier income stream means a higher​ discount rate for future income. ​Open source future cash flows
are riskier for an investor because the open source nature means that, even if the software is successful, there
is significant risk that other firms can enter (the software is open source!) and provide solutions based on that
software in competition with the original developers.

payments in exchange for rights to future income.

Of course, open source also has commercial benefits. For example: because the source code is
visible, it is much easier for third parties other than the original developers to contribute and
extend. It is also more attractive to third-parties to do so as there is no hold-up problem. This
both lowers the cost of production of open source software for the original developers and
increases opportunity for commercial reuse and exploitation. However, the disadvantage on 8

the revenue side almost certainly outweighs the advantages on the cost side - at least, at the key
early stages of software development. 9

This leads to a common dynamic where users choose a proprietary option early on, since it is
better as a result of all that up front investment that proprietary providers can afford. But later,
users find themselves then locked in and tend to have underestimated the extent of this lock-in.
Later, when open source may be comparable in quality – or even better, it has to overcome this
high level of lock-in.

Switching Costs and Lock-in

The basic idea here is obvious: as you use software, you make investments that gradually
increase your switching costs to an alternative. This makes it increasingly difficult to switch to
an alternative and you end up "locked-in" to the existing software solution and vendor. Note
that technology and vendor lock-in are often considered the same: that is you are locked-in both
to a given piece of software and the vendor who provides it. This is certainly the case for
proprietary software. However, for open source the two are different: because the software is
open and therefore freely available to anyone - including other vendors - there is no vendor
lock-in. 10

This lock-in is especially significant when software is a "platform" - where you - or others - plan
build on it. Platforms are especially strong on lock-in because you or others make substantial
investments in other software or tools that build on (are "complementary") to that platform. A
good example is operating systems like Windows: an operating system is really useful for the
software that runs on that operating system - the operating system is a platform. In these cases,
lock-in tends to evolve and get stronger and stronger. As you - or others - build on the platform

8 This is the “yin and yang” of software production. Be proprietary: you get more money but your costs are
higher and people are less likely to extend and build on what you create. Conversely, if you go open source you
get less direct money but your costs of production are lower.
9 The people most likely to contribute (or to pay others to contribute) to development of (open source)

software are actual users of the software (it is the users who are getting the direct benefits). However, when

software is at early stages it is likely not very usable - and it may be unclear whether it ever will be usable. Thus,

at this stage, open source has all the costs of development but few of the benefits in terms of additional

contributors helping out.
10 With open source, lock-in still occurs at the technology level. Ultimately, lock-in to a technology or platform
is unavoidable given the nature of software. However, open source still reduces the level of technological
lock-in, as its open nature makes it easier to adapt and evolve the technology.

it becomes more and more useful, so more and more people build on it, making it ever harder to
switch to an alternative.

Anticipating that they extract value from locked-in users later, vendors are willing discount
software and services early on to build their market share. For example, Twitter charges nothing
for its use, is conservatively estimated to have "lost" over a $1 billion and is yet to see profit. It is
thus pricing its service well below cost. The assumption motivating its backers is that, once
firmly established, it will have a form of lock-in – its audience and hence advertisers – sufficient
for it to charge high fees to advertisers (or others) that recoup those losses. 1112

Pricing and marketing strategies like these, which rely on high switching-costs, might be termed
the "crack" model: a vendor give its users some "crack" (software) for free in the hope that it is
addictive enough (i.e. has high enough switching costs) that later on when they raise the price
the users will not be able to "stop" (switch to something else).

The analogy is useful beyond conveying the basic concept. Drug addiction is a concern because
we assume that users fail to correctly anticipate the costs of addiction on themselves and
others: if they did anticipate them correctly, we could argue that addiction was "rational" and
there would be little reason to intervene. 1314

Similarly, our concern about "addiction" in software (lock-in from high switching costs) is that
users incorrectly anticipate future costs. As with drugs, they inflict these future costs not just on
themselves but on others: because of the high fixed costs / low marginal cost and platform
nature of software, my choice in software affect yours, because there is a strong incentive to
cluster on a "successful" software platform. This success is determined by which software is
chosen not just by me but by others.

The Future is Important and Difficult to Know

That knowing the future is hard is true in many areas of our life. However, in software it is
especially important – and difficult for several reasons.

11 The pricing dynamics of software, especially low up-front prices, are not purely a result of switching costs but
also interact with the cost model of software (see below) where scale (i.e. lots of users) is key.
12 In a world of perfect foresight, switching costs and lock-in would not necessarily be a problem: the switching
costs (and hence lock-in) later would be perfectly anticipated up front and fully discounted into the initial price.
However, as we will discuss, we are far from this perfect world. Moreover, in the world of software where
technology has multiple and complex interdependencies, it is very hard to understand the implications and
costs of future lock-in – and hence the discount you should get today.
13 The point would essentially be that we do not wish to dispute others’ preferences: de gustibus non est

disputandam. After all, there may be many areas where I think you make mistaken choices or vice versa - e.g.

my watching X-Factor, or your liking for classical music.
14 There is, interestingly, a rich economic literature on "rational" addiction models in which users correctly

anticipate their changing future preferences (i.e. growing addiction). The main interest there is on the differing

impact of policy actions e.g. price regulation when addiction is rational vs irrational and on the unusual

behaviour of path-dependent preferences.

First, software has a very long life compared to many we buy. For example, it is not unusual to
hear of corporations using and evolving software systems that are decades old – that is rare for
a car or a refrigerator. At the individual level, we stay with trusted and familiar programs for
years, even after they have been superseded by superior alternatives (or even newer versions of
the same software). This fact is directly related to and driven by the lock-in point: once one has
learned or built on a given system, one is loath to surrender all that work and use a new system.

Second, software technology evolves incredibly quickly and often unpredictably. This means
that it is hard to predict which technology options will be available in a few years time.

Third, user needs also evolve rapidly and in unpredictable ways (often driven by the experience
of using the software). This is especially important because software is so easy to alter and
adapt. If I start using my car and I decide I do not like its dashboard layout it is very expensive to
change. By contrast, if I decide I do not like the layout of my software application it is quite easy
to tweak and modify.

Together this means that: a) my needs (as purchaser) will almost certainly evolve in ways I did
not anticipate b) it will (often) be feasible to adapt my existing software to those needs.

Finally, humans ​underestimate​ the degree of change for two reasons. First, we find it difficult to
conceive of the multiplicity of possible futures and weight them accurately – we focus on one or
two outcomes and exclude low probability options. Second, we have an "anchoring" and framing
bias based in the present and we overweight futures that are close to the present because it is
easier to extrapolate from it.

Together, these exacerbate the lock-in problem: rapidly changing technology and user needs
imply I will need to see software developed rapidly in future. I will need to get upgrades
regularly to my existing system or switch to another system. Switching costs will therefore
"matter" on a regular basis. Furthermore, the incremental nature of software will confer a 15

major cost advantage on existing software (and especially my choice of software) as it can be
incrementally evolved (rather than having new code written) thus increasing lock-in over time.
Finally, and most importantly, for behavioural reasons, we will underestimate these changes and
the level of lock-in they generate.

Government Incentives and Bargaining

15 In addition, it is worth emphasizing that rapid change and uncertainty about the future mean that initial

contracts will be very "incomplete" regarding the future performance and development of the software. This

makes it hard for the buyer of software to specify at the time of initial purchase how the software should be in

future periods. This weakens the buyer relative to the seller and increases the risk of hold-up. Combined with

the behavioural issues this increases lock-in and reduces the ability of the buyer to bargain efficiently up front

with the seller.

Governments are bad at negotiating generally and are especially bad in this environment. As a
result, the lock-in problem is especially acute for Government. Government struggles here for
several reasons:

1. The principal-agent problem. The bureaucrats who actually buy software for
government are themselves the agents for the government. The government itself is , in
turn, an agent for “the people”. Thus, we have a two-stage principal agent problem which
is problematic for effective supervision and incentive alignment.

2. Governments, and their bureaucratic representatives, over-discount the future
compared to the present. Crudely: in ten years time they may not be in office but the
software they bought will probably still be in use . This means they underweight lock-in.

3. Government bureaucrats in charge of procurement are usually less experienced and less
competent compared with the private-sector parties with which they deal.

The principal-agent problem
Software procurement by government is ultimately for the benefit of citizens - either because
they use the software (e.g. it runs the country's healthcare site) or because it makes government
run better. However, the people responsible are individual bureaucrats who a) may never use
the system b) do not bear the costs (or get the savings) resulting from a given system. In the
terminology of the principal-agent model, citizens are the principal whilst the procurement
bureaucrat is the agent. Even worse, software is complex and hard to evaluate, so it is difficult 16

for the principal (citizens) to assess whether the agent (the bureaucrat) has done a good job.
Second, citizens are diffuse and poorly organized so it is hard for them to monitor and sanction
the bureaucrats (of course, citizens can elect "management" - i.e. politicians - to monitor the
bureaucrats but that just adds another level to the principal-agent setup).

The response to these issues is twofold. First, governments introduce elaborate rules and
procedures for procurement to follow and focus on compliance with those rules rather than the
actual outcome (good software). This is because compliance is auditable and visible. Second, and
more significantly, bureaucrats face extremely skewed incentives: if something visibly goes
wrong they will be punished severely; if something goes wrong that is not obvious (e.g. you paid
$20m for a working system that you could have got for $10m) nothing will happen; if something
goes right in ways that are visible someone else will take the credit; if something goes right in
ways that are hard to see no-one will care (e.g. the system works better than expected, or is
cheaper than anticipated).

This makes bureaucrats extremely risk-averse as well as strongly inclined to do the standard

16 In fact the problem here is worse than a simple principal agent problem as there are two levels. Government

bureaucrats in charge of procuring software are usually at the far end of a two-level principal-agent problem:

citizens elect politicians (level 1), and then these politicians oversee the bureaucrats who actually procure the

software (level 2).

thing ("no-one ever got fired for buying IBM"). It also makes them innovation-averse, as 17

innovation has a high risk component: it pairs a small probability of a large win with a large
probability of small loss (you lose all or part of your initial investment).

It should be clear that these points have major implications for software. First, software is
especially complex and hard to assess, so the "monitoring" and reward problems inherent in the
principal-agent problem are especially severe. Second, open source is perceived as "risky" for
bureaucrats because it is a) (still) less standardized b) its development model makes it harder for
bureaucrats to (appear to) transfer risk to the contractor, for example: around legal compliance
or security. Third, open source fits less well with bureaucratic processes around procurement: 18

open source is about adaptability whilst bureaucratic procurement is about spec and deliver;
open source is often less-developed up front but can be more easily adapted and extended; and,
finally, open source firms are smaller and are less able to afford the red-tape involved in
bureaucratic procurement. Fourth, and most importantly, the future is often entirely ignored in
procurement because it is complex and does not fit well with a rigid process - it is not a feature
you can define and it is hard to include in the price. Thus, ​the costs of lock-in - and the benefits
of reducing it - are often not considered at all in the procurement process​.

Governments over-discount the future
Governments, or, at least, bureaucrats have short time horizons, at least relative to the lifetime
of software. Elected governments often last only a few years, and inside those governments
bureaucrats move around frequently. Thus, a bureaucrat who buys a particular piece of
software will rarely still be in the same post when the consequences of that decision are felt,
especially if we are thinking in terms of later upgrades and customization.

Thus, government software buyers care much more about today than tomorrow and will quite
happily trade, for example, a $5m saving in buying software today for a $50m higher cost of
software three years down the road. This means that “future features” such as ease of
customization or switching are given much less weight than “today’s features” such as a cheap
price or more options.

17 Risk aversion means that gains are weighed much less heavily than losses. Note that gains here include

saving money, so bureaucrats are quite insensitive to poor outcomes that comply with the rules. For example,

where the bureaucrat pays $100m for a software system for which they could have paid $50m, but where the

selected system was lowest bid against the procurement specification and to get the $50m option required a

small change in the specification or slightly relaxed qualifications for your bidders.
18 Note that the proprietary model does not actually handle these risks any better, but they hide them better

from the bureaucratic process. Remember, what matters to the bureaucrat is compliance with the process and

the appearance - not the actuality - of safety and security. Open source, unlike the proprietary option, does not

hide these issues nearly as effectively (for example, closed source software may have risks around actual legal

ownership of code, or lack of infringement, or indemnities for security issues but these can be hidden better

than in the open source setup).

Government lack of experience and competence relative to private sector counterparts
In software negotiations, government bureaucrats are often less competent and less
experienced than their private sector counterparts. Government IT is a multi-billion dollar
business. Governments often do large deals – in large part, for some of the bureaucratic reasons
discussed earlier: procurement is painful so doing it in big chunks is attractive.

Thus, you will often have a bureaucrat on a $50k salary up against private sector sales personnel
on ten times that salary on a deal for software worth tens or hundreds of millions of dollars. In
such circumstances, it is not surprising that the government comes off worse. It is also no
surprise that future costs (lock-in) get neglected and that open source, which cannot afford the
high-priced sales teams, loses out.

How To Promote Open Source in Civic Tech
We have established in the previous section that there is a strong basis for promoting open
source for civic tech and specifically government. This section focuses on some strategic and
tactical suggestions for achieving this goal. There are five specific proposals:

1. Recognize and reward open source in IT procurement
2. Make government IT procurement more agile and lightweight
3. Develop a marketing and business development support organization for open source in

key markets (e.g. US and Europe).
4. Open Offsets: establish a flexible permits-style trading scheme for funding open source

software similar to carbon offsets. The analogy is based on the fact that many public and
private entities benefit from open software but do not “offset” that use with matching
funding of open source. Here, public and private actors could purchase “open offsets”
with to discharge their funding obligations with the money raised allocated to funding
open source projects.

5. Choose Open: a grass-roots oriented campaign to promote open software locally and
nationally

Recognize and Reward Open Source in Procurement
Give open source explicit recognition and beneficial treatment in procurement. Specifically,
introduce into government tenders: EITHER an explicit requirement for an open source solution
OR a significant points value for open source in the scoring for solutions. Significant points value
would be, say, greater than 30% of the points on offer being allocated for the solution being
open source.

It is important to ensure here that open source is explicitly defined as per the Open Source
Definition, that the open source requirement cover ​all​ components of the solution.

As an aside, we note that a challenge for pursuing this approach is the existence of powerful
existing proprietary software vendors who will oppose this change. Ways to address this include
adopting the second option (points-scoring as opposed to fixed requirement) as that still allows
for proprietary solutions to be offered (and to win if they are sufficient superior). Second, but
less attractive (since it is vulnerable to expansion as an exception), is to focus more on areas that
are relatively new and temporarily neglect areas in which lock-in is already large, and vendors
well entrenched.

Agile Procurement
Alter procurement methodologies to favour agile approaches over "spec and deliver".
Specifically, current methodologies follow a "spec and deliver" model in which government
attempts to define a full spec up front and then seeks solutions that deliver against this.

The spec and deliver approach greatly diminishes the value of open source - which allows for
rapid iteration in the open, and more rapid switching of provider - and implicitly builds lock-in to
the selected provider whose solution is a black-box to the buyer.

In addition, whilst theoretically shifting risk to the supplier of the software, given the difficulty
of specifying software up front, it really just inflates upfront costs (since the supplier has to price
in risk) and sets the scene for complex and cumbersome later negotiations about
under-specified elements.

Instead, create an agile procurement stream in which, rather than detailed requirements being
set up front, you secure estimated budget for an initial phase and seeks bids on X number of
sprints (with ability to end after any sprint). This model requires acceptance of some budget
uncertainty: the total cost of delivery of software may not be fully known in advance. However,
one can, alternatively, fix a budget and accept some uncertainty over features delivered. We
emphasize that this limitation is not a limitation of open source but of software in general. As
the maxim goes: in software development you can have any two of features, time and budget –
but not all three. Traditional tendering with its fixed requirements, fixed timeframes – and
implicitly fixed costs – exists in an illusory world where one can have all three and implicitly
imagines that buying software is like buying traditional goods like chairs whose features, usage
and cost are all well-known up front.

The agile model should be paired with a requirement that the software produced is open source.
This is the only way to get real value as it ensures the government purchaser retains freedom to
switch from a given vendor in future. This preserves a good bargaining position and the ability to
exit the relationship if vendor performance is inadequate. Moreover, software development will
end at some point and the buyer should be left with software they can freely use -- as well as
adapt and build on in the future if they need to.

To move to more agile approach requires that procurement become less costly and risky inside

government. Currently the high cost and risk mean that bureaucrats have strong incentives to
bundle procurement into as large chunks as possible.

To counter this we propose that government officials have an explicit threshold below which
they are allowed to engage in a lightweight, fast-track process. One could even have multiple
thresholds with reduced bureaucracy below each threshold. Suggested thresholds would be
$250,000, $50,000, $20,000 (each lower threshold having a lighter-weight approach).

Finally, we note that a light-weight procurement methodology that supports agile software
development will benefit government generally and will also support more procurement from
(local) SMEs which is something many governments wish to do.

Open Source Solutions - a marketing and business development
agency for government open source
The proposal is to develop a marketing and business development support organization for
open source in key markets (e.g. US and Europe). The organization would be small, at least
initially, and focused on three closely related activity areas (in rough order of importance):

1. General marketing of open source to government at both local and national level: getting
in front of CIOs, explaining open source, demystifying and derisking it, making the case
etc. This is not specific to any specific product or solution.

2. Supporting open source businesses, especially those at an early-stage, in initial business
development activities including: connecting startups to potential customers ("opening
the rolodex") and guidance in navigating the bureaucracy of government procurement
including discovering and responding to RFPs.

4. Promoting commercialization of open source by providing advice, training and support
for open source startups and developers in commercializing and, especially, marketing
their technology. Open source developers and startups are often strong on technology
and (very) weak on marketing and selling their solutions - the support here helps address
these deficiencies

Open source has particular "collective action" challenges around marketing. First, open source
is a general concept that needs to be promoted to potential users. However, being everyone's
problem, this is also no-one's problem. Second, open source firms tend to be smaller naturally
because they have more competition and lower margins. By contrast, proprietary firms
(successful ones) become huge monopolists with marketing and lobbying budgets to match.
Their size and profitability generates large amounts of money to invest in marketing their own
specific products and advocating for proprietary solutions generally (especially where
threatened by open source). They are also able to solve the collective action problem, at least
partially, thanks to their size relative to the market.

This demonstrates the need to market the open source concept. What is needed is something
like an industry association but (initially) smaller and more dynamic. This marketing would focus
on targeted engagement with decision-makers in government, rather than public activities or
mass marketing. The model here would almost be a sales one, but focused on selling a concept
rather than selling a product. 19

Another, related, challenge for open source is that open source companies struggle at the
individual level with marketing and business development. In part, this this is about attitude and
experience. The bigger part, though, arises from the fact that open source companies lack the
up-front capital that proprietary firms have. Marketing and sales is a major "up-front" cost
where you have to invest (significantly) now for a future return. As discussed previously, the
open source model has difficulty generating this sort of up-front cash-flow. In addition, open
source civic tech firms are all selling to the same customer (government) whilst being relatively
small and fragmented and therefore can especially benefit from coordinated support in this
area.

The proposal here addresses this challenge by providing specific business development support
including:

● Opening the "rolodex": connecting a startup with a product to the relevant people
(getting them a demo or a phone call)

● Guidance on navigating the government procurement system including finding and
responding to RFPs or obtaining relevant certifications 20

The suggestion here is to provide this business development function in the same organization
as the general marketing; the logic being that the marketing is more low-key, one-to-one
sales-style and therefore has a natural overlap with the business development work - both in
the "rolodex" aspect and understanding the government system.

In terms of actual funding and structure, we suggest organizing this entity as a for-profit both in
order to attract the right kind of talent - e.g. experienced sales and marketing professionals -
and to provide a path for sustainability. Initial start-up capital can be relatively small e.g. $2m -
the lack of any existing investment even here means even relatively small initial support could
have a large impact. The suggestion would be that this investment would be provided from
philanthropic sources. Once established, the organization could sustain itself by establishing a
membership model for open source businesses based around support for both marketing and

19 This marketing effort would focus on "evangelism" - i.e. building awareness, understanding and support -

rather than "lobbying" for specific policy change.
20 Government procurement often has all kinds of restrictions on who can supply, e.g. you must have over X

revenue, have certification Y, be based in location Z. Open source startups are often especially small and lack

the kind of resources to allow them to do this. Help here can either be in getting these certifications, or, more

likely, in connecting them to relevant organizations who have the certification and are able to act as

"sponsors".

business development. In addition, it could engage in some consultancy and training around
business development. The actual organization could initially be relatively small: just a few
experienced sales and marketing staff with a small support team.

Open Offsets
Open Offsets is a model for funding open source analogous to the carbon offsets model for
funding actions to reduce carbon pollution that contributes to climate change. It is based on
establishing target levels of open source financing combined with a flexible permits-style
trading scheme for public and private actors to discharge these obligations. The essential
components are:

● Tracking direct government, philanthropic and private funding for open source (either
through procurement or sponsorship)

● Establishing target commitments for spending on open source (these may be formal or
informal targets)

● Establishing a route for those whose spending is insufficient to pay into an "offsets" fund:
those who have "under-bought" or "under-funded" open source relative to their
commitments have to buy "open offsets" with those funds used to support open source
development.

The background to this approach is understanding open source as a similar (but opposite)
"commons" problem to environmental "commons" problems like global warming. Specifically,
open source has the problem that, being freely shared, creators generate positive benefits for
others that they are not paid for - i.e. "positive externalities". With global warming the issue is
that creators of carbon dioxide create costs for others in the form of global warming that they
do not fully pay for - i.e. "negative externalities".

Just as carbon offsets (or carbon prices) seek to internalise the negative externality of carbon
emissions by getting emitters to pay for their emissions (and offset them) so, with open source,
we want to internalise some of benefits by getting major beneficiaries like governments to pay
for the benefits they receive directly and indirectly from open source.

Specifically, governments - and other groups - would commit to certain levels of funding for
open source. However, rather than a rigid system whereby funding has to be in a specific form
(for example, buying specific open source software), it is better to combine targets with a
flexible, permits-style, approach to meeting the target. In particular, participants in the 21

program can discharge their funding target via several routes; for example, purchase of open

21 This takes direct inspiration from environmental regulation where this kind of approach is common. It also

takes inspiration from work on alternative (non-IP based) funding models for innovation and especially medical

innovation. See e.g.

http://blog.okfn.org/2004/10/30/the-medical-innovation-convention-a-new-global-framework-for-healthcar

e-research-and-development/​.

http://blog.okfn.org/2004/10/30/the-medical-innovation-convention-a-new-global-framework-for-healthcare-research-and-development/
http://blog.okfn.org/2004/10/30/the-medical-innovation-convention-a-new-global-framework-for-healthcare-research-and-development/

source solutions or general funding and support of open source software development. Second,
those who have underspent against their target can make up their deficit by spending into a
common fund, whilst those who overspent can reclaim from the fund (within limits).

This schema would be targeted at government and other relevant entities such as
philanthropies and publicly-funded research organizations. It can also be run formally or
informally: informally would mean that there were no contractual commitments to particular
targets. As well as increasing funding, the schema provides increased transparency,
accountability and coordination around open source support.

Choose Open
“Choose Open”: a grass-roots oriented campaign to promote open software in government and
government run activities such as education. “Choose Open” would be modelled on recent
initiatives in online political organizing such as “Move On” in the 2004 US Presidential election
as well as online initiatives like Avaaz. It would combine central provision of message, materials
and policy with localized community participation to use these to drive change.

The strength of the open source is its large set of people who are deeply committed and
supportive to it. Many of these people might be willing to volunteer to promote its use.
However, to be effective this community needs direction and coordination. Using
community-organizing techniques “Choose Open” should be able to convert this group which is
currently informal, diffuse and poorly organized into a proper activist network by providing it
with direction and process.

Choose Open would focus initially on more local change: e.g. at the city or district level as this
will be the most favourable for driving change given the grassroots make-up of the supporter
base the political dynamics of national decision making. In addition, tactical choices can be made
in terms of whether to focus at the policy level (e.g. a city Mayor introducing an open source
preference), the discretionary level (a school switching to open source) or even just the
individual level - more people who know and care about open source.

In terms of how this would proceed we anticipate something like the following

● A “Choose Open” campaign would be set up with a small paid staff
● Identification of overall mission and specific potential asks
● Recruitment phase to identify and select local volunteer “leads”. Seek individuals who

are both committed but also reasonable and credible – pragmatic rather than fanatic.
For example, if you were targeting increasing use of open source in schools you would
want someone who was a parent and respected within the community. Aim would be to
have one leader per “area” at the lowest level with perhaps one or two volunteer
coordinators at each level above that.

● Start a campaign. Look to have one campaign at a time nationwide. We think schools

might be a great initial focus as there is a strong case on several levels to be using and
teaching with open source.

Because of its activist nature, “Choose Open” would obviously not be funded by government.
Instead we propose it would be funded either by philanthropists or by open source businesses.

Appendix

Why Open Standards or Open APIs mean little (relative to open
source)
Sometimes it is argued - often by purveyors of proprietary software solutions - that the focus
should be on open standards (and "open APIs") rather than open source.

Here, I want to briefly make clear why I think open open standards (and, even more so, open
APIs) are no substitute for open source.

The logic of standards is usually clear: a standard is almost always about coordinating on some
kind of technology "platform" (conceived in the broad sense); in particular, specifying the
interface between the provider(s) of the platform and users of the platform and allowing these
two groups to operate independently.

For example, there are standards for the width of railways, or for electric plug sockets. The
railway standard means that people can build tracks (the platform) whilst others can make
trains that run on those tracks without having to coordinate (and, even better, different people
can make different parts of the track and they will be consistent). Similarly, people can build
houses and install electric sockets and you can go out and purchase electrical equipment and
know that the equipment and sockets will work together. Since information technology has
platforms everywhere, standards are a big deal.

Our interest here is not in standards per se, since they are obviously very valuable, but the role
of (open) standards in avoiding lock-in to a given vendor. The core of our concerns about open
standards on their own is that:

● Open standards without running code to implement them mean little. If only one vendor
can implement an "open standard" due to complexity or other factors, the fact the
standard is open delivers little in terms of reduced lock-in or competitiveness. The real
test of an open standard is a running open source solution and delivers full compatibility

● Standards are often adapted and deviated from because software is so malleable. Again
this means what really matters is the actual implementation - the running code - not the

standard as written in some official document. Once again, it means we should focus on
the openness of software which represents the standard "in reality" rather than the
openness of the standard.

● Standards are usually behind the curve technologically due to slow pace at which
standardization moves. This means, similar to the previous point, that the standard does
not represent what is actually being used. Once again it is running software which
matters - and whose openness we should focus on.

Open APIs are even less meaningful. An API is an "application programming interface". 22

Originally, APIs were about connection points between different pieces of software. With the
growth of online activity we are increasingly talking about online APIs.

An "open" API as the term is conventionally used simply means and API which is publicly
documented and which can be ipmlemented by others free of charge. However, that "open API"
is still owned and controlled by the vendor implementing the system exposing the API and it can
be changed at any time at the whim of that vendor. Competitors who seek to implement the API
themselves will always be playing catch-up and have no guarantee that the API will remain
stable or even properly documented. As such, the benefit of an open API in avoiding or reducing
lock-in is negligible.

Furthermore, for online APIs making something "open" just means making it public. However,
online APIs are already de facto public -- no-one is going to make an online API and then keep it
secret and try get people to pay to know about it (they may charge you to use it but that's
different). As such, making the API open is an empty statement: it already was open. The
commitment to an open API would really only mean something if the API was shared and
standardized across multiple vendors in which case it would be a standard and we would be
back to our previous discussion of standards.

In sum "open" APIs are a form of sham openness. They do not deliver any of the real benefits of
openness and serve only to distract uninformed buyers from more meaningful forms of
 openness such as open source.

22 We made similar points several years ago in
https://blog.okfn.org/2006/09/04/open-apis-dont-equal-open-knowledge/

https://blog.okfn.org/2006/09/04/open-apis-dont-equal-open-knowledge/

